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l{, ABSTRACT

The problem of selecting good populations out of k normal

populations is considered in a Bayesian framework under exchange-
able normal priors and additive loss functions. Some basic
approximations to the Bayes rules are discussed. These approxima-
tions suggest that some well-known classical rules are "approxi-
mate" Bayes rules. Especially, it is shown that Gupta-type rules
are extended Bayes with respect to a family of the exchangeable
normal priors for any bounded and additive loss function.
Furthermore, for a simple loss function, the results of a Monte
Carlo comparison of Gupta-type rules and Seal-tyne rules are
presented. They indicate that, in general, Gupta-type rules per-
faorm better than Seal-type ru]es: A
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1. INTRODUCTION

In many practical situations, the experimenter often faces
the problem of comparing several competing populations,treatments
or processes. The statistical methodology of ranking and selec-
tion procedures provides useful techniques for solving such prob-
lems. One of the basic formulations of the selection problem is
the subset selection formulation of Gupta (1956), under which we
select a random sized non-empty (small) subset of the populations
while controiling the probability of including the 'best' popula-
tion in the selected subset. One modification of the basic goal
is concerned with the selection of “good" populations which are
defined below. Contributions in this direction have been made by
Fabian (1962), Desu (1970), Carroll, Gupta and Huang (1975), and
Panchapakesan and Santner (1977), among others. Moreover, Berger
(1979) and Bjgrnstad (1980) have studied the minimaxity of some
well-known classical rules under various control conditions.

Let LITERRL be k independent normal populations with

unknown means e],...,ek, respectively, and a common known variance.

Let the ordered 8, be denoted by 9[1] <ol < e{k]. A population ns
is said to be
a good population if 8 > e[k]-A,

a bad population if B, < S[k]-A,

where A is a given positive constant. This definition implies
that the experimenter is willing to accept all the populations
which are sufficiently close to the 'best' population (i.e. the
populations associated with e[k])while screening out the bad pop-
ulations. Thus it seems reasonable that any suitable loss func-
tion should contain two components: one depending on the bad pop-
ulations in the selected subset and another depending only on the
good populations excluded. Then the loss function of the follow-
ing type seems to be appropriate for our purpose: for

9= (e'....,ek) and ac {1,2,...,k} (a # ¢), let
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(1.1)  i(s,a) = igaLB(ei-e[k]m) + 1;aLG(ei-e[k]+A)’

where LB is non-increasing, LG is non-decreasing, LB(y) = 0 for

y > 0 and LG(y) = 0 for y < 0. Here the action a € G means that
we select the set (ni, ica} as the set of good populations where G
is the action space consisting of all non-empty subsets of
{1,2,...,k}. Any loss function of the type given in (1.1) will be
called additive.

Miescke (1979) has shown that the selection ruie proposed by
Gupta (1956) is asymptotically Bayes as the sample size increases
for an additive loss function when the unknown means are assumed
to have an exchangeable normal prior. Also, he has studied the
approximations to the Bayes rules for an additive and linear loss

function i.e. the one corresponding to LB(y) =y and LG(y) = y+,

with y+ (y") denoting the usual positive (negative) part of y.

In this paper, we assume that the unknown means Bys--58)
have an exchangeable normal prior. Under this assumption some
basic approximations to the Bayes rules for any additive loss
function are discussed. Gupta-type rules are shown to be extended
Bayes with respect the family of exchangeable normal priors for a
class of additive loss functions. Also, a Monte Carlo comparison
of two well-known classical rules with the Bayes rule is carried
out for a simple loss function. This empirical study as well as
our theoretical results support the earlier results of the Monte
Carlo studies by Chernoff and Yahav (1977), and Gupta and Hsu
(1978), which indicate that Gupta-type rules would perform as well
as the Bayes rule for a wide class of loss functions.

2. BAYES RULE AND APPROXIMATIONS TO BAYES RULE

Suppose that we have k independent samples of size n from
each population. By sufficiency we can reduce the problem to that
based on the sample means X],...,Xk, whose common variance may be
assumed to be 1 without loss of generality.

It is assumed that the loss function is given by (1.1), and




we further assume that the unknown means ¢ = (e],...,ek) have an
o exchangeable normal distribution such that, for -(k-])'] <p <1, f
(2.1) E(e;) = m, Var(s;) = o5 (i = 1,...,k), and ¥

Cov(ei,ej) = oog (1 <i<j=<k).

] i Gupta and Hsu (1978) and Miescke (1979) have used a representation
? of ei's similar to one given in (2.2) to reduce the prior to an
] iid normal prior;

(2-2) (ei'm)/oo = /]_'; Zi - (/;.- + Jp—+)zo9

where ZO’ZI""’Zk are standard normal random variables with
Zys-+-»Z, being independent and Cov(Zy,Z;) = oo/ /M5 (i=1,....k).
Note that we can restrict ourselves to the translation invariant
rules ¢ i.e. &(x) = &6(x+w) for any w = (w,...,w) € R in this
framework. Such a reduction is well presented in the next result.

Lemma 1. Llet § be a translation invariant rule. Then the overall

risk wrt the prior in (2.1) can be written as follows; for 02 =

(1-p)ad, R

(2.3)  r(o%.6) = [ [ L(8,6(x))dN{e]bx,bI)dN(x]0,(1-b)7'1),
where b = 02/(1+02), I is the kxk identity matrix and N(-|u,I) o
denotes the distribution function of a multivariate normal distri- ’
bution with mean y and covariance matrix L.

Let X[1] 2+ -2 XK denote the ordered observations of
X],...,Xk and (1) and e(i) denote the n and 8 associated with |
X[4] for i = 1,...,k. Then it follows from Lemma 1 that 8(j)» 2 !,
posteriori, has normal distribution with mean bx[i] and variance P

b= 02/(1+oz). Now the Bayes rule given in the next result can be
easily derived by using the methods similar to those in Goel and
Rubin (1977).

Theorem 1. Assume that the loss function is given by (1.1). Then
the Bayes rule s* wrt the prior in (2.1) always selects (k) and




moreover it selects "(§) if and only if E[2(6 (i) [k]+A Ix] <0, =

Remark 1. Properties of the Bayes rule such as the monotonicity

‘Miescke (1979) and Kim (1979)).

hilhaagl Lol odued

for i = 1,...,k-1 with ¢(:) = B(-) - G(-). E

i s

and orderedness can be derived from Theorem 1 (see, for example,

‘Eventhough Theorem 1 gives a general description of the Bayes ]
rule for any additive loss function, a complete specification of '
the Bayes rule requires the explicit form of 2{(-). Also, it 1

usually involves difficult computations to implement the Bayes
rule. So it is of practical significance to examine some basic
approximations to the Bayes rule, which are applicable to every
additive loss function provided they are easily computable. For
this purpose, we introduce the following notations: for i =
1,....k-1,

(2.8)  x3=(Xpy X4y X T X Xk

a_, 1 - ] -
5= j;i LIy &= T j;i aeimeily
k

u_
x;=(0,0,...,0, j=§+](x[j]-x[1’]))’

)_(T-‘-(X[k]-)([i], N ,X[k]-X[i]) s
D()_<’1!')=E[1(6(i)-8[k]+A) | x]

=Ea[a-/b { Z;-2;+7% 1T,
2[a- ?:? ( BCRI [1])} ]

where Z],...,Zk are iid normal random variables. It follows from
a result in Marshall and Olkin (1974) that D(g;) is Schur-convex
in 5;. Also, note that D(§§) is non-decreasing in each argument
of x¥. Furthermore, it can be easily shown that we have the fol-

i
Towing inequalities: i

(2.5) 5? ) x} 2 (jgi(x[j]-x[i]), .50, } (X[J] (1] ) ﬁ

J>i

where o 2 g means that a is majorized by 8. Hence, it follows




b

fram the Schur convexity of D(g?), (2.5) and the monotonicity of
D(g?) that, for i = 1,2,...,k-1,

(2.6) 0(x3) < 0(xt) < D(xY),

E[L(A-(B(k)-e(i))+)|§] < 0(x¥) < 0(x}).

‘These bounds on D(g?) and Theorem 1 suggest the "approximate”
Bayes rules as follows; for b = 02/(1+02),
(2.7) 8yt Select (k) and, for i = 1,...,k-1, select (i) iff

X[§) 2 *[k] " d;(b)/+b,
52: Select n(k) and, for i = 1,...,k-1, select (4) iff

63: Select "(k) and, for i = 1,...,k-1, select (1) iff
( IZ( (b)/v/b)/(
Xpsq > Xpsq-d b/b/k"):
[1] - j=1'+] [J] 3
64: Select (k) and, for 1 = 1,...,k-1, select (1) iff
! - /b
X[.i] Z_E'_'T J;'l X[J] d] (b)/ s
where dj(b)(j = 1,2,3) are determined so that
(2.8) Hy(b,d)=Ex[a~/b ( max Z.-Z;+d)*] <0 iff d < d (b),
2<j<k
Hy(b,d)=Ee[a-/b (Z,-Z,+d)"] < 0 iFf d < dy(b),
Eala-vbimax( max Z.-Z,,Z,-Z,+#d)}7] <0 iff d < d.(b);
2¢i J 71V T} - 3
<j<k-1
with Z],...,Zk being iid standard normal random variables. The
next result follows from {2.6) and Theorem 1.

Corollary 1. For any additive loss function given in (1.1), the
Bayes rule &* wrt an exchangeable normal prior satisfies the fol-

lowing relations with probability one; for a = 1,3 and 8 = 2,4,
(2.9) 8,(x) < 6*(x) < 85(x).




It should be pointed out that more approximations to the
Bayes rule can be obtained for a particular additive loss function
(see, for instance, Miescke (1979) and Kim (1979)). Also note
that, for k = 2, the "approximate" Bayes rules coincide so that
the Bayes rule can be explicitly specified.

It seems interesting to note that the "approximate" Bayes
rules except 63 are members of the class of the following well

known classical selection rules;

(2.10) Gg: Select n, iff x; = X[k ] and/or x; Z-E%T' ) xj-d,

m, . _
8q° Select m iff X§ 2 X[y d.

Rules §" were proposed by Gupta (1956) for the goal of selecting
a subset containing the best population, and later studied by
Desu (197C) for selecting a subset consisting of only good popula-
tions. Rules §2 are modified versions of the selection rules pro-
posed by Seal (1955).

Note that one Gupta-type rule 61 always selects a smaller
subset than the Bayes rule while another rule 62 of the same
type selects a larger subset. Thus, one might expect that the
Gupta-type rules s™ would be close to the Bayes rule in some
sense. This is proved in Theorem 2 given below. First, we recall
the next definition (see, for example, Ferguson (1967)).

Definition 1. A decision rule 60 is called an extended Bayes rule
wrt a family & of prior distributions if, for every € > 0, there

exists a prior t € § such that r(r,éo) < inf r(1,8) + €.
)

Also, we need the following conditions.

Conditions A.
(A-1) The loss function is additive with 2(+) = LB(-)-LG(~)
being bounded.
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(A-2) Let dg denote the number dj(b) determined by (2.8)

for b = 1, and assume that they are finite (j=1,2).
Theorem 2. Suppose that Conditions A hold. Then, for df < g« d§,

the selection rules Gg are extended Bayes wrt the family of
exchangeable normal priors; in fact,

(2.11) Vim [r(o,69) - r(o,6%)] =
g

where r(o,s) denotes the overall risk of a rule given by (2.3).

Proof. It follows from Theorem 1, Corollary 1 and {(2.6) that, for

1+02’

(i) {“(i) ¢ 6*(x), (i) € 53(§)}‘: {0 < 0(33) < H](b,/E d)},

(i) {u( ) € 6% ¢ s x)} < {H (b /b d) < Df x*) < 0},
where Hj (j = 1,2) are def1ned in (2.8). Let Ai and Bi denote the
events {n(i) ¢ s*(x), T(4) € 62(5)} and {w(i) € 5*(x),

"(4) ¢ 63(5)}, respectively. Then, (i) and (ii) imply that

k-1
(2.12)  r(o.8g)-r(a,6%) ELL 00 (1 -Tg )]
(T O (5,06 A}, -H (6,76 41, 1]
E {H, (b, d)I, -H, (b,vb d .
£ AT B

i

IA

Since the condition (A-1) implies the continuity of H (b,d)

(j = 1,2), it can be easily shown that the monoton1c1ty of H (b,d)
in b and d, the definition of dj( ) in (2.8) and the cond1t1on
(A-2) imply the following facts;

(iii) d.(b) is non-increasing in b (j = 1,2),

(iv) Tlim d (b) = d* (j =1,2),
b1 I
b<1

(v) For d e (df,d3], dy(b)//b < d < dy(b)/vb for b suffi-
ciently close to 1 and b < 1.
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It follows from (v), (2.9) and (2.12) that, for sufficiently large
g, 1.e., for b sufficiently ciose to 1,

r(c,Gg)-r(c,é*)

k-1

k-1
- 4y © l_'__b__ 7 - -
= (H](b,/Ed)~H2(b,vbd),ié] PLY & d](b),Lm Zri] =

/7B
,(0)1,

Yy —

b
where Z[]] <i..< Z[k] are the ordered iid standard ncrmal rardom
variables. Hence, it follows from Ccnditions A that

Tim [r(o,dg)—r(o,d*)] = 0,

g™

which completes the proof.

3. MONTE CARLO RESULTS FOR A SIMPLE LOSS FUNCTION

The well-known selection rules s™ and ¢ in Section 2 are,
in some sense, natural approximations to the Bayes rule, and it is
shown that the Gupta-type rules s™ would perform as well as the
Bayes rule when the prior variance is large. In this respect, the
comparative performance of the Gupta-type rules ¢™ and the Seal-
type rules §2 was studied using Monte Carlo technique for a simple
loss function given as follows:

(3.1) L(s,a) = <y igal(_m‘o)(ei-e[kj+;\+¢2 igal[o’r)(gj_:[k]+gh

where ¢ > g, Cy > 0 and Cite, = 1.
For this simple 1nss function, it follows from (2.3) that for
any translation invariant rule, the posterior risk is given by

(3.2) ¢ L Pls yeop q-8ix) + ¢ Yo Ple/sy2br 900X,
i iEd()_() (i) “[k] - 2 1#3‘()_() (i)-"[k]

where X],...,X ar2 iid normal random variables with mean 0 and

variance 1+02.

=

Also, by Theoren 1, the Bayes rule is determined

by




= c]-{m j§i¢(z+45(x[i]-x[j])+A/r5)d¢(z),
where b = 02/(1+02).
We carried out the Monte Carlo comparisons for k = 3 and
k = 9. The relevant parameters in this comparison study are ”2' 4
and A (=1—c2), while ¢ = c2/c] was used instead of < since ¢,
being the ratio of two different sources of losses, seems more
appealing than <y The range of the parameter values in this

report is as follows:
A =0.5, 1.0,
(1.5)" (3 = -2(1)6),

s}
c=1,2, 4, 8

For each of parameter sets (4,c,c', 400 simulations for k = 3 and
100 simulations for k = 9 were carried out. In each simulation,
the generation of k iid normal random variables X],...,Xk with
mean 0 and variance 1+02 was involved. The Bayes rule and its
posterior risk are obtained from (3.2) and (3.3) by numerically
computing D(g;)'s, where some of the computations can be omitlted
by using (2.9). Then, the estimated Bayes risk can be obtained hy
taking the average of the posterior risks. Two sufficiently fine
grids of the constants d are used to obtain optimal values of d
for & and &2 which minimize the average regrets, where the range
of these trial values is determined by (2.9).

The estimated Bayes risk, the estimated regrets incurred by
the optimal ¢™ and the optimal 74 are given in Table [ along with
the sample standard deviations of these estimates. The cells left
blank in the table correspond to cases in which the Bayes rule
selects only one population or all the populations. It can be
observed from Table I that the perfcrmance of the Gupta-type rule
§" is almost as good as that of the Bayes rules, and that it per-
forms remarkably better when the prior variance becomes larger.

‘
t
s




11

This agrees with Theorem 2. Also, we observe that, for k = 3, the

Seal-type rule &2 performs reasonably well though its performance

is not as good as the Gupta-type rule ", However, for k = 9, the

rule &2 performs very badly and it was observed that, for most

values of o, the optimal s tends to select much larger subsets

than the Bayes rule as ¢ becomes larger. In Figures la-1f, the

estimated risks of the Bayes, the optimal s™ and the optimal 52

are shown graphically for a = 1.0 and some selected values of c.

Table II gives the average number of the bad populations selected

and the average number of the good populations excluded by each

rule. Also, the proportions of times that the optimal ™ and the

optimal ¢? coincide with the Bayes rule are presented graphically

in Figures 2a-2h. ;
Chernoff and Yahav (1977), and Gupta and Hsu (1978) have

observed the performance of the rule s™ similar to the one in this

study under certain loss functions for the goal of selecting a

subset containing the 'best' population. However, the performance f

of 62 in the present study is worse than that observed by Gupta

and Hsu (1978), and it seems that the Seal-type rule has little to

recommend for the goal of selecting good populations. The results

of the present study and the previous ones mentioned above indi-

cate that the Gupta-type rule performs fairly well in various

formulations at least in the Bayesian framework considered in this

paper. However, it should be pointed out that the proper constant

d should be chosen according to the operating characteristics of

the particular problem considered before one chooses the constant

d based on any intuitive control condition. For this reason the

estimated optimal d-values of the rules s™ are provided in Table '

II1I, which can be used if one accepts the framework in this sec-

tion. . .
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3 TABLE I
The entry on top of each cell is the estimated Bayes risk and the
numbers in the second and the third row are the regrets incurred

by the optimal s" and by the optimal 5a, respectively. The esti-
mated standard deviations of the estimates are given in the

f parentheses.
k=3,4=0.5
ﬂ < 1 2 s 8
.4609 (.0016) | .3297 (.0012) |.1995 (.0008)
.44 { .0024 (.0005) {.0006 (.0002) {.0000 (.0000)
’ .0334 (.0029) |.0033 (.0008) |.0001 {.0001)
' . .4686 (.0053) |.3897 (.0026) |.2558 (.0011)|.1456 (.0001)
" .67 | .0038 (.0006) |.0029 (.0005) |.0010 (.0003)|.0001 (.0001)
- .0487 (.0028) |.0185 (.0017) |.0024 (.0006)|.0000 (.0000
.3872 (.0076) ! .3424 (.0056) |.2511 (.0028)|.1532 (.0014)
1.00 | .0036 {.0006) |.0027 (.0005) |.0022 (.0004)|.0011 (.0003)
.0175 (.0018) |.0160 (.0016) |.0053 (.0008){.0016 (.0004}
: .2813 (.0088) |.2710 (.0068) {.2005 (.0045)(.1361 (.0024)
| 1.50 | .0027 (.0006) |.0023 (.0005) {.0020 (.0004)|.0009 (.0002)
.0115 (.0015) |.0180 (.0024) |.0078 (.0013)|.0033 (.0006)
.2033 (.0083) |.1833 (.0072) |.1567 (.0049)].0987 (.0030)
, 2.25 |.0010 (.0005) |.0010 (.0004) |.0011 (.0003)|.0009 (.0003)
= .0103 (.0014) |.0318 (.0034) |.0148 (.0020%|.0082 (.0011)
1 .1470 (.0083) |.1278 (.0065) |.1081 (.0050)|.0662 (.0028)
] 3.38 |.0006 (.0002) |.0004 (.0002) |.0007 (.0003)|.0005 (.0002)
P .0084 (.0013) |.0343 (.0038) |.0318 (.0030)!.0159 (.0016)
.0984 (.0072) |.1207 (.0060) |.0726 (.0044){.0457 (.0025)
5.06 |.0000 (.0000) |.0008 (.0004) |.0000 (.0000)|.0002 (.0001)
r .0045 (.0009) |.0241 (.0032) |.0379 (.0033)|.0203 (.0020)
.0663 (.0061) |.0564 (.0050) |.0462 (.0038)!.0298 (.0021)
7.59 |.0003 (.0001) |.0002 (.0001) {.0002 (.0001)!.0000 {.0000)
.0045 (.0010) |.0184 (.0030) |.0299 (.0041)|.0277 (.0032)
.0335 (.0043) |.0392 (.0043) |.0287 (.0030)|.0200 (.0019)
j 11.39 |.0000 (.0000) |.0000 (.0000) |.0000 (.0000)|.0001 (.0001)
.0026 (.0013) |.0109 (.0022) |.0248 (.0041)|.0300 {.0038)

P
b
r

3

}
i




3 TABLE I

The entry on top of each cell is the estimated Bayes risk and the

o numbers in the second and the third row are the regrets incurred
# by the optimal s™ and by the optimal 6a, respectively. The esti-
mated standard deviations of the estimates are given in the
‘ parentheses.
’ k=9, 4 =0.5
< 1 2 a 8
1.5947 (.0148){1.5322 (.0118)]1.0429 (.0037){.5953 (.0016)
.44| .0198 (.0033){ .0296 (.0046); .0070 (.0018)|.0011 (.2001)
.0603 (.0052)| .2614 (.0170){ .0306 (.0043)!.0017 {.0606)
1.1473 (.0193){1.2235 {(.0173)| .9849 (.0118)}.6407 (.0051)
.67 .0083 (.0021)! .0223 (.0041)! .0222 (.0031)].0112 (.0023)
0083 (.0021)| .2021 (.0099)| .3029 (.0146):.0735 (.00¢5)
.7783 (.0234)] .8272 (.0240)| .7342 (.0179)!.5097 {.0106)
1.00] .0072 (.0028)| .0238 (.0039)} .0191 (.0035)/.0138 (.0026)
.0108 (.0029)| .107% (.0092); .3424 (.0164)1.2757 (.0126)
.5637 (.0237)| .6126 (.0261)| .5207 (.0194)].3625 (.0118)
1.50{ .0064 (.0021)| .0186 (.0041)| .0107 (.0024}.0101 (.0023)
.0096 (.0028)| .0654 (.0078)! .2469 (.0148):.4252 (.0230)
.4021 (.0249)| .3444 (.0202)| .3389 (.0181)1.2324 (.0124)
2.25| .0043 (.0018)| .0051 (.0024); .0062 (.0019)].0067 (.0016)
.0054 (.0016)] .0443 (.0068)| .1228 (.0141),.1368 (.0172)
.2420 (.0209)| .2662 (.02171)§ .1925 {.0154)'.1559 (.0120)
3.38{ .0015 (.0010)| .0032 (.0010)| .0032 {.C013).0019 (.00G7)
.0053 (.0018)| .0424 (.0081)| .0815 { 0130){;1092 (.0136)
.1868 (.0191)} .1284 (.0150)| .1590 (.0152),.0924 (.0093)
5.06| .0004 (.0003)| .0005 (.0004)| .0032 (.0012)}.0017 (.0008)
0128 (.0029)| .0304 (.0071)! .0683 (.O]O92J.0880 {.0134)
J1114 (.0153)] .0972 (.0134)| .1101 (.0123)/.0583 (.0071)
7.59| .0001 (.0001)| .0012 (.0009)| .0009 (.0005)1.0003 {.00C3)
.0041 (.0021}} .0357 (.0078), .0852 ( 01432i:0783 (.0121)
.0622 (.0121) .0754 (.0115)‘ .0698 (.0113)|.0421 {.0064)
11.39| .0001 (.0001)! .00G0 (.0000)!| .n014 (.0007):.0000 {.C000Q)
.0059 (.0026)( .0236 (.0069)i7.0441 (.0099)§.0629 {.0107)
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] TABLE I
The entry on top of each cell is the estimated Bayes risk and the
numbers in the second and the third row are the regrets incurred

by the optimal & and by the optimal éa, respectively. The esti-
mated standard deviations of the estimates are given in the

o

parentheses.
k=13,4=1.0
o % 1 2 4 8
.T462 (.0018)
.44 | 0000 (.0000)
.goo1 (.0001)
.3213 (.0027) | .2276 (.0023) |.1435 (.0017;
.67 } .0016 (.0003) | .0011 (.0003) |.0000 (.0000)
.0315 (.0034) {.0035 (.0009) {.0001 ({(.0001)
3515 (.0046) |.2969 {(.0032) {.1983 (.0019)|.1158 {(.0012)
1.00 |.0018 (.0004) |.0023 (.0005) |.0011 (.0003)(.0002 {.0001)
0774 (.0044) |.0293 (.0028) {.0087 (.0012})|.0013 (.0005) i
.2948 (.0066) |.2613 (.0052) |.1922 (.0032)|.1227 (.0018) ‘
1.50 | .0022 (.0005) {.0030 (.0006) |.0022 (.0005)|.0008 (.0002)
.0385 (.0034) |.0228 (.0024) |.0135 (.0016)].0056 (.0008)
2117 (.0075) |.1922 (.0061) |.1488 (.0042)|.1015 (.0025)
2.25 | .0009 (.0003) |.0009 (.0003) |.0C!1 (.0003)|.0009 (.0002)
.0389 (.0041) |.0272 (.0032) {.0150 (.0019)|.0067 (.0010)
.1438 (.0069) [.1344 (.0060) |.1049 (.0040)|.0661 (.0026)
3.38 {.0005 (.0002) |.0008 {.0003) |.C009 (.0003)|.0004 (.0002)
.0296 (.0033) |{.0435 (.0046) {.0198 (.0024){.0141 (.0015)
.0997 (.0067) |.0888 (.0055) |.0682 (.0039)|.0482 (.0025)
5.06 [.0005 (.0003) |.0005 (.0003) |.0004 (.0002){.0003 (.0001)
.0231 (.0030) |.0478 (.0052) |.0385 (.0036){.0222 (.0020)
.0625 (.0052) |.0608 (.0046) [.0476 (.0033)|.0335 (.0022)
7.59 {.0001 (.0001) [.0002 (.0001) {.0000 (.0000){.0001 (.0001)
.0T82 (.0028) |.0384 (.0047) [.0366 (.0043){.0251 (.0022)
.0376 (.0041) |.0416 (.0042) {.0323 (.0029){.0207 (.0019)
11.39 [.0000 (.0000) |.000% (.0001) [.0001 (.0001){.0001 (.0001)
.0086 (.0019) |.0329 (.0048) |.0438 (.0059)|.0358 {.0025)
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TABLE I

x The entry on top of each cell is the estimated Bayes risk and the
numbers in the second and the third row are the regrets incurred

;
[ by the optimal &" and by the optimal §9, respectively. The esti- ?
] mated standard deviations of the estimates are given in the 1
parentheses. i
k=9,a4=1.0 ]
] ‘ a ¢ 1 2 4| 8
" 1.0626 (.0097)| .7235 (.0076)
.44} .0073 (.0022){ .0000 (.000Q)
.0175 (.0048){ .0005 (.0005) §
1.4650 (.0147){1.2372 (.0097) | .8253 (.0065).4712 {.0045)
.67 .0256 (.0052) .0284 (.0062) |.0053 (.0013)|.0020 (.0009) y
.6476 (.0328)| .1873 (.0180) ‘.0242 (.0050)|.0041 (.0015)
1.0771 (.0300){1.0578 {.0200) 1.8267 £.0119)1.5314 (.0063)
1.00} .0212 (.0038) .0283 (.0050) ;.0245 (.0045);.0122 {.0025)
.1833 (.0116) .5966 (.0264) [.3253 (.0190)! .0991 (.0085)
L7150 (.0280)] .7205 (.0264) |.6264 (.0203)|.3998 (.0117)
1.50f .0178 (.0042); .0154 (.0D35) {.0119 (.0025)}.0103 (.0020)
.1088 (.0095)| .3235 (.0219) |.6319 (.0311)!.3399 (.0165)
.4724 (.0264) .4427 (.0269) |.4031 (.0199)%.2852 {.0132)
2.25 .0071 (.0019){ .0061 (.00153) g.OOSS (.0014)i .0082 {.0022)
.0685 (.0088)| .1925 (.0177) i.4051 (.0293){.5105 (.0170)
_ .2580 (.0227); .2926 (.0237) }.2417 (.0154){.1732 (.0112)
i 3.38 .0021 (.0013)] .0050 (.0018) |.0043 (.0013;1.0022 (.0009)
n L0299 (.0062), .1266 (.0172) |.2275 (.0239);.3]20 (.0349)
| 1680 (.0167) .1920 (.0165) |.1211 (.0124); .1027 (.0078)
-, 5.06/ .0006 (.0005)! .0006 (.0003) {.0024 (.0014)!.0010 (.0006)
i‘ .0257 (.0061)] .1062 (.0159) !.1277 (.01932}.]334 (.0158)
> .1149 (.0158) .1331 (.0158) i.]]26 (.OI]S)E .0566 (.0070)
: 7.59| .00l (.0006)f .00i5 (.0007) i.0019 (.0009);.0005 (.0003)
- L0279 (.0066)! .0642 (.0120) j.]OOQ (.0170)} .1124 {.0198)
L‘ .0617 (.0113)] .0668 (.0122) },0694 (.0088){ .0364 (.0049)
11.39{ .0000 (.0000)! .0001 (.0001) |.0000 (.0000) .0000 (.0000)
L0111 (.0041)| .0262 (.0073) E.0931 (.0185)} .0501 (.0118)
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The rows in each cell correspond to the Bayes, the optimal 5" and

and the optimal s2 from top to bottom. The entries in the first
column and the second column are the average number of bad popu-
lations selected and that of good populations excluded, respec-

tively.
=3, A =0.5
T~< 2 8
.7662 .1556] .9525 .0184 .9940 .0009
.44 .7661 _1604| .9631 .014C .9940 .0009
.9684 .0202] .9974 .0008 .9950 . 0000
.5349 .4023] .9472 .1109 .2105 .0172 .2916 .0024
.67 LS113 .43370 .9617 .1080 .2335 L0126 L3029 .00
.5249 .5098/1.1306 .0469 .2409 .0125 L2961 .0018
.3694 .40511 .6767 .17%2 .9962 .0649 .2349 .0179
1.00 L3417 .4399] .6810 .1770 .0264 .0601 .2605 .0160
.3007 .5089] .7794 .147% 0775 L0512 .2254 .0209
.2529 .3098] .4931 .1599 .7029 .0749 .9663 .0323
1.50 2518 .3162) .4971 .1614 .7208 .0728 .0072 .0282
L1932 .3926] .5378 .1646 .7927 .0622 .0207 .0292
.1848 .2219] .3204 .1147 .5417 .0597 .7023 .0233
2.25 .1908 .2178] .3331 .1099 .5727 .0533 .7143 .0227
.1238 .3034] .3289 .1582 .6485 .0516 L7927 .021
.1498 .1443] .2131 .0845 .3733 .0418 .4674 .0168
3.38 | .1542 .1412| .2186 .0824 | .3740 .0425 | .4708 .0162
.1019 .2089| .1675 .1588 .5551 .0361 .6128 .0158
.0983 .0984| .1693 0527 .2370 .0315 .2846 .0159
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The rows in each cell correspond to the Bayes, the optimal s

TABLE 11

and the gptimal ¢ from top to bottom.
column and the second column are the average number of bad popu-
lations selected and that of good populations excluded,

The entries in the first

respectively.
k=9, a=0.5

C i

g L
9132 2.2761 | 3.0660 .7653 | 4.8169 .0994 | 5.2816 .0095
.4411.0130 2.2159] 3.0756 .8049 | 4.8959 .0883 l 5.3538 .0016
.3486 2.9614| 5.3807 .0000 | 5.3676 .0000 | 5.3721 .0000
.4778 1.8168| 1.6250 1.0223 | 3.3360 .3971 | 4.9058 .1076
.67] .3761 1.9351{ 1.7540 .99181 3.5822 .3633 | 4.7214 .1432
.3761 1.9351| .3805 1.9482|6.4389 .0000 | 6.4282 .0000
.4314 1.1253| .9308 .1755!2.0683 .4006 | 3.2729 .1643
1.00{ .4686 1.1025| .9346 .5092 | 2.0634 .4257 ) 3.1622 .1936
.3322 1.2461| .3246 1.2393] .3307 1.2630 | 7.0685 .0000

I
.3508 .7766| .7108 .5636|1.3636 .3100 | 2.2131 .1312
1.50| 3322 .8080| .6561 .6188|1.4223 3087 | 2.2498 .1379
.2804  .8662 | .2761 .8789 | .2985 .8849 | .5227 .8208
.2795  .5248| .4351 .2990 | .9762 .1795 | 1.3742 .0896
2.25{ .2937 .5191| .4602 .2941( .9984 .1817 | 1.3010 .1063
2149 .6003| .1661 .4992 | .7470 .3903 ' 1.4132 .2386
1924 2916 | .3815 .2086 | .6387 .DB]OA} 8702 .0666
3.38| .1990 .2881| .3913 .2085! .6179 .0902 & .8632 .0696
1477 3869 | .2572 .3343 | .5281 .23G5 ' 1.1838 .1503
.2040  .1697 | .1862 .0995{ .4834 .0779 | .5406 .0364
5.06| .2043 .1701| .1867 .1000| .5266 .0711 | .5690 .0348
L1218 .2775| .0833 .1966 | .3837 .1881 | .5487 .1345
.0900 .1328| .1805 .0556 | .3384 .0530 | .3745 .0188
7.59] 0951  .1279| .1950 .0501 | .3313 .0559 | .3659 .0202
.0641  .1668 | .0695 .1646| .2955 .1702 | .7284 .0827
.0639  .0605| .1262 .0501| .2148 .0335 | .2707 .0135
11.39] .0589 .0655| .1262 .0501 | .1842 .0429 | .2618 .0147
.0398  .0964 | .0497 .1236| .0590 .1277 | .4669 .0597
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TABLE 11

The rows in each cell correspond to the Bayes, the optimal s" and

the optimal §% from top to bottom. The entries in the first
column and the second column are the average number of bad popula-
tions selected and that of good populations excluded, respectively.

k=3,4=1.0

o~< 1 2 4 8

.44

.0012
.0002
.0000

.67

.1155
.0984
.0195

.6525
.6636
.6861

.0152
L0113
.0037

L7129
L7129
.7169

.0011
.0011
.0002

1.00 | .4355

1.50 | .3064

2.251 .2093

3.38 .1324

5.06 | .0970

7.59 | .0638

11.39 | .0403
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TABLE II 1
. The rows in each cell correspond to the Bayes, the optimal &M
‘ and the optimal 62 from top to bottom. The entries in the first
column and the second column are the average number of bad popu-
lations selected and that of good populations excluded,
respectively.
k=9,a4=1.0
a 1 2 4 8
1.9926 .1325 |2.1648 .0029
' 44 | 2.0050 .0849 | 2.1648 .0029
2.1601 .0000 2.1719 .0000
" 1.6325 1.2974 |2.8473 .4321/3.8555 .0678| 4.1572 .0104
; .67 11.6381 1.3430 |2.8424 .4772 3.9488 .0511 4.1682 .0113
! 4.2251 .0000 | 4.2752 .0000} 4.2477 .0000| 4.2768 .0000
.? L8180 1.3392 | 1.7229 .725212.9470 .29671 4.0555 .0Q909
1.00 | .8561 1.3404 | 1.8779 .6902/ 3.0915 .2912% 3.9255 .1209
.1683 2.3525 L1729 2.3952]5.7603 .0000! 5.6146 .0000
: .5275 .9024 |1.0839 .5388/2.0030 .2823| 2.6489 .1187
| 1.50 | .4802 .9852 ([ 1.1259 .5409(1.9110 .3202| 2.8192 .1090
.7563 1.4912 .1540 1.4890] .1469 1.5362| 6.6510 .0008

.3851 .5597 .6039 .3637{1.1882 .2068{ 1.8056 .0951
2.25| .3572 .6019 .5833 .383111.2177 .2063| 1.8583 .0978
.1286 .9532 .1097 .8995 .1212 .9799| 7.1606 .0000

L1921 .3239 .4279  .2250] .7161 .1232| 1.1018 .0571
3.38 | .1992 .3210 .4329  .2300{ .7603 .1174; 1.0418 .0671
.a720 .5038 .1345 .5616; .3436 .5007 ] 1.1293 .4047

.1376 .1984 .3050 .1355] .3050 .0752 .6648 .0324
5.06 | .1483 .1891 .2722 1527} .3234 .0735 .6924 .0301
.a583 .329 .0912 .4017| .2887 .2388| 1.5093 .0769

" 1225 .1073 L2137 .0928F .3130 .0625 23697 .0174
4 7.589 | .1086 .1234 .2286 .0876| .3149 .0644 .3791  .0169
.0455 .2403 .0713  .2604} .3099 .1894 .7931  .0909

) .0569 .0665 .1308 .03491 .2497 .0243 .2103 .0147
' 11.39 | .0569 .0665 L1376 .0316] .2497 .0243 L2192 .0136
.0230 .1225 .0236 .1227{ .0788 .1834 .2337 .0682
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Estimated d values for the optimal §"

22

1 2 4 8 1 2 8
k=3,4=0.5 k=9, a=0.5
.44 12,1572 3.7576 4.6502 .7906 2.0710 3.4991 5.0995
.67 [1.0391 2.1839 3.3917 4.2796] .0000 1.2464 2.2379 2.8148
1.00 6040 1.4808 2.3435 3.1461| .2222 .8727 1.6505 2.2304
1.50 .4939 1.2570 1.9361 2.6181| .1333 .6862 1.4193 2.0923
2.25 5304 1.1760 1.8682 2.2840( .2595 .9927 1.4305 1.9776
3.38 L4552 1.1332 1.6755 2.3222] .4240 .9194 1.5243 1.8893
5.06 4940 1.0801 1.6866 2.1657| .4329 .8559 1.3859 1.9873
7.59 3775 1.0029 1.6789 2.2435| .4683 1.0987 1.3360 1.9157
1.39 4938 1.1011 1.6307 2.0799}) .2981 1.1815 1.3571 2.0548
k=3,4=1.0 k=9,2=1.0
.44 15.3177 .2282 5.2869
.67 12.9075 3.9441 5.0438 1.8799 2.9796 4.1874 5.1159
1.00 [1.7525 2.6293 3.3965 4.1991{1.0949 2.0000 2.7778 3.1879
1.50 |1.2341 2.0514 2.6403 3.3854] .7834 1.5887 2.2136 2.8867
2.25 |1.0389 1.6517 2.3356 2.9320| .7598 1.3617 2.0292 2.6420
3.38 .9678 1.5832 2.2664 2.8035| .7958 1.3381 2.0995 2.4958
5.06 .9447 1.6608 2.1144 2.6623[1.0135 1.4671 2.0125 2.7515
7.59 L9013 1.5872 2.1949 2.7446| .7652 1.4258 1.9957 2.6211
1.39 .9977 1.5598 2.2023 2.7268{1.0730 1.6401 2.2073 2.7092




FIG. la. Estimated risks of Bayes, optimal Gupta-type and optimal

Seal-type rules.
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k FIG. 1b. Estimated risks of Bayes, optimal Gupta-type and optimal
Seal-type rules.
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FIG. 1c. Estimated risks of Bayes, optimal Gupta-type and optimal
Seal-type rules.
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FIG. 1d. Estimated risks of Bayes, optimal Gupta-type and optimal
Seal-type rules.
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Estimated risks of Bayes, optimal Gupta-type and optimal

Seal-type rules.
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FIG. 1f. Estimated risks of Bayes, optimal Gupta-type and optimal
Seal-type rules.
k=9, A=1.0, c=8.0
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FIG. 2a. Propartion of times the optimal Gupta-type rule coin-
cides with the Bayes rule.
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FIG. 2b. Proportion of times the optimal Seal-type rule coin-
cides with the Bayes rule.
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FIG. 2c. Proportion of times the optimal Gunta-type rule cgincides

with the Bayes rule.
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F1G. 2d. Proportion of times the optimal Seal-type rule coincides
with the Bayes rule.
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FIG. 2e. Proportion of f'imes the optimal Gupta-type rule coin-
cides with the Bayes rule.
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FIG. 2f. Proportion of i:imes the optimal Seal-type rule coincides
with the Bayes rule.
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FIG. 2g9. Proportion of times the optimal Gupta-type rule coin-
cides with the Bayes rule.
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F1G. 2h. Proportion of times the optimal Seal-type rule coin- |
cides with Bayes rule.
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